Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Retrovirology ; 20(1): 14, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605152

RESUMO

BACKGROUND: Using pigs as organ donors has advanced xenotransplantation to the point that it is almost ready for clinical use. However, there is still a zoonotic risk associated with xenotransplantation, and the potential transmission of porcine endogenous retroviruses needs to be surveyed. Despite significant attempts to eliminate this risk, by the selection of PERV-C free pigs with low expression of PERV-A, -B, and by the genome-wide inactivation of PERV using CRISPR/Cas9, the impact of superinfection resistance (SIR) was not investigated. SIR is a viral trait that prevents reinfection (superinfection). For PERV, the underlying mechanism is unclear, whether and how cells, that harbor functional PERV, are protected. Using PERV-C(5683) as a reference virus, we investigated SIR in a newly developed in vitro model to pursue the mechanism and confirm its protective effect. RESULTS: We developed three PERV-C constructs on the basis of PERV-C(5683), each of which carries a hemagglutinin tag (HA-tag) at a different position of the envelope gene (SP-HA, HA-VRA, and RPep-HA), to distinguish between primary infection and superinfection. The newly generated PERV-C(5683)-HA viruses were characterized while quantifying the viral RNA, reverse transcriptase activity, protein expression analysis, and infection studies. It was demonstrated that SP-HA and RPep-HA were comparable to PERV-C(5683), whereas HA-VRA was not replication competent. SP-HA and RPep-HA were chosen to challenge PERV-C(5683)-positive ST-IOWA cells demonstrating that PERV-C-HA viruses are not able to superinfect those cells. They do not integrate into the genome and are not expressed. CONCLUSIONS: The mechanism of SIR applies to PERV-C. The production of PERV-C particles serves as a defense mechanism from superinfection with exogenous PERV-C. It was demonstrated by newly generated PERV-C(5683)-HA clones that might be used as a cutting-edge tool. The HA-tagging of PERV-C is novel, providing a blueprint for the tagging of other human tropic PERV viruses. The tagged viruses are suitable for additional in vitro and in vivo infection studies and will contribute, to basic research on viral invasion and pathogenesis. It will maintain the virus safety of XTx.


Assuntos
Gammaretrovirus , Superinfecção , Humanos , Animais , Suínos , Genes env , Fenótipo , RNA Viral
2.
Nat Commun ; 12(1): 6393, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737297

RESUMO

Pompe disease (PD) is a severe neuromuscular disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). PD is currently treated with enzyme replacement therapy (ERT) with intravenous infusions of recombinant human GAA (rhGAA). Although the introduction of ERT represents a breakthrough in the management of PD, the approach suffers from several shortcomings. Here, we developed a mouse model of PD to compare the efficacy of hepatic gene transfer with adeno-associated virus (AAV) vectors expressing secretable GAA with long-term ERT. Liver expression of GAA results in enhanced pharmacokinetics and uptake of the enzyme in peripheral tissues compared to ERT. Combination of gene transfer with pharmacological chaperones boosts GAA bioavailability, resulting in improved rescue of the PD phenotype. Scale-up of hepatic gene transfer to non-human primates also successfully results in enzyme secretion in blood and uptake in key target tissues, supporting the ongoing clinical translation of the approach.


Assuntos
Doença de Depósito de Glicogênio Tipo II/enzimologia , alfa-Glucosidases/metabolismo , Animais , Autofagia , Terapia de Reposição de Enzimas , Feminino , Doença de Depósito de Glicogênio Tipo II/terapia , Fígado/enzimologia , Masculino , Camundongos , alfa-Glucosidases/genética
3.
EBioMedicine ; 61: 103052, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33039711

RESUMO

BACKGROUND: Pompe disease (PD) is a neuromuscular disorder caused by deficiency of acidalpha-glucosidase (GAA), leading to motor and respiratory dysfunctions. Available Gaa knock-out (KO) mouse models do not accurately mimic PD, particularly its highly impaired respiratory phenotype. METHODS: Here we developed a new mouse model of PD crossing Gaa KOB6;129 with DBA2/J mice. We subsequently treated Gaa KODBA2/J mice with adeno-associated virus (AAV) vectors expressing a secretable form of GAA (secGAA). FINDINGS: Male Gaa KODBA2/J mice present most of the key features of the human disease, including early lethality, severe respiratory impairment, cardiac hypertrophy and muscle weakness. Transcriptome analyses of Gaa KODBA2/J, compared to the parental Gaa KOB6;129 mice, revealed a profoundly impaired gene signature in the spinal cord and a similarly deregulated gene expression in skeletal muscle. Muscle and spinal cord transcriptome changes, biochemical defects, respiratory and muscle function in the Gaa KODBA2/J model were significantly improved upon gene therapy with AAV vectors expressing secGAA. INTERPRETATION: These data show that the genetic background impacts on the severity of respiratory function and neuroglial spinal cord defects in the Gaa KO mouse model of PD. Our findings have implications for PD prognosis and treatment, show novel molecular pathophysiology mechanisms of the disease and provide a unique model to study PD respiratory defects, which majorly affect patients. FUNDING: This work was supported by Genethon, the French Muscular Dystrophy Association (AFM), the European Commission (grant nos. 667751, 617432, and 797144), and Spark Therapeutics.


Assuntos
Terapia Genética , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Fenótipo , Medula Espinal/metabolismo , alfa-Glucosidases/genética , Alelos , Animais , Dependovirus/genética , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Homozigoto , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Força Muscular/genética , Músculo Esquelético , Prognóstico , Medula Espinal/fisiopatologia , Transdução Genética , Resultado do Tratamento , alfa-Glucosidases/metabolismo
4.
Mol Ther ; 28(9): 2056-2072, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32526204

RESUMO

Pompe disease is a neuromuscular disorder caused by disease-associated variants in the gene encoding for the lysosomal enzyme acid α-glucosidase (GAA), which converts lysosomal glycogen to glucose. We previously reported full rescue of Pompe disease in symptomatic 4-month-old Gaa knockout (Gaa-/-) mice by adeno-associated virus (AAV) vector-mediated liver gene transfer of an engineered secretable form of GAA (secGAA). Here, we showed that hepatic expression of secGAA rescues the phenotype of 4-month-old Gaa-/- mice at vector doses at which the native form of GAA has little to no therapeutic effect. Based on these results, we then treated severely affected 9-month-old Gaa-/- mice with an AAV vector expressing secGAA and followed the animals for 9 months thereafter. AAV-treated Gaa-/- mice showed complete reversal of the Pompe phenotype, with rescue of glycogen accumulation in most tissues, including the central nervous system, and normalization of muscle strength. Transcriptomic profiling of skeletal muscle showed rescue of most altered pathways, including those involved in mitochondrial defects, a finding supported by structural and biochemical analyses, which also showed restoration of lysosomal function. Together, these results provide insight into the reversibility of advanced Pompe disease in the Gaa-/- mouse model via liver gene transfer of secGAA.


Assuntos
Terapia Genética/métodos , Doença de Depósito de Glicogênio Tipo II/metabolismo , Doença de Depósito de Glicogênio Tipo II/terapia , Fígado/metabolismo , Via Secretória/genética , Transfecção/métodos , alfa-Glucosidases/metabolismo , Animais , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo II/genética , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Fenótipo , Transdução de Sinais/genética , Transcriptoma , Resultado do Tratamento , alfa-Glucosidases/genética
5.
Nat Microbiol ; 5(1): 34-39, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819216

RESUMO

The gut commensal segmented filamentous bacterium (SFB) attaches to the ileal epithelium and potently stimulates the host immune system. Using transmission electron microscopy (TEM), we show that mouse and rat SFB are flagellated above the concave tip at the unicellular intracellular offspring (IO) stage and that flagellation occurs prior to full IO differentiation and release of IOs from SFB filaments. This finding adds a missing link to the SFB life cycle.


Assuntos
Bactérias Anaeróbias/crescimento & desenvolvimento , Bactérias Anaeróbias/ultraestrutura , Flagelos/ultraestrutura , Animais , Linhagem Celular , Flagelos/metabolismo , Flagelina/genética , Flagelina/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Íleo/microbiologia , Mucosa Intestinal/microbiologia , Camundongos , Ratos , Receptor 5 Toll-Like/metabolismo
6.
Cell Microbiol ; 21(12): e13102, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31424155

RESUMO

The cell wall of Aspergillus fumigatus is predominantly composed of polysaccharides. The central fibrillar core of the cell wall is composed of a branched ß(1-3)glucan, to which the chitin and the galactomannan are covalently bound. Softening of the cell wall is an essential event during fungal morphogenesis, wherein rigid cell wall structures are cleaved by glycosyl hydrolases. In this study, we characterised the role of the glycosyl hydrolase GH55 members in A. fumigatus fungal morphogenesis. We showed that deletion of the six genes of the GH55 family stopped conidial cell wall maturation at the beginning of the development process, leading to abrogation of conidial separation: the shape of conidia became ovoid, and germination was delayed. In conclusion, the reorganisation and structuring of the conidial cell wall mediated by members of the GH55 family is essential for their maturation, normal dissemination, and germination.


Assuntos
Aspergillus fumigatus/genética , Parede Celular/genética , Proteínas Fúngicas/genética , Morfogênese/genética , Esporos Fúngicos/genética , Quitina/genética
7.
Nat Commun ; 10(1): 342, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30664666

RESUMO

The orchestration of intercellular communication is essential for multicellular organisms. One mechanism by which cells communicate is through long, actin-rich membranous protrusions called tunneling nanotubes (TNTs), which allow the intercellular transport of various cargoes, between the cytoplasm of distant cells in vitro and in vivo. With most studies failing to establish their structural identity and examine whether they are truly open-ended organelles, there is a need to study the anatomy of TNTs at the nanometer resolution. Here, we use correlative FIB-SEM, light- and cryo-electron microscopy approaches to elucidate the structural organization of neuronal TNTs. Our data indicate that they are composed of a bundle of open-ended individual tunneling nanotubes (iTNTs) that are held together by threads labeled with anti-N-Cadherin antibodies. iTNTs are filled with parallel actin bundles on which different membrane-bound compartments and mitochondria appear to transfer. These results provide evidence that neuronal TNTs have distinct structural features compared to other cell protrusions.


Assuntos
Extensões da Superfície Celular/ultraestrutura , Neurônios/ultraestrutura , Organelas/ultraestrutura , Animais , Transporte Biológico , Catecolaminas/metabolismo , Linhagem Celular , Extensões da Superfície Celular/metabolismo , Microscopia Crioeletrônica/métodos , Humanos , Camundongos , Neurônios/metabolismo , Organelas/metabolismo
8.
Mol Microbiol ; 105(6): 880-900, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28677124

RESUMO

Aspergillus fumigatus, a ubiquitous human fungal pathogen, produces asexual spores (conidia), which are the main mode of propagation, survival and infection of this human pathogen. In this study, we present the molecular characterization of a novel regulator of conidiogenesis and conidial survival called MybA because the predicted protein contains a Myb DNA binding motif. Cellular localization of the MybA::Gfp fusion and immunoprecipitation of the MybA::Gfp or MybA::3xHa protein showed that MybA is localized to the nucleus. RNA sequencing data and a uidA reporter assay indicated that the MybA protein functions upstream of wetA, vosA and velB, the key regulators involved in conidial maturation. The deletion of mybA resulted in a very significant reduction in the number and viability of conidia. As a consequence, the ΔmybA strain has a reduced virulence in an experimental murine model of aspergillosis. RNA-sequencing and biochemical studies of the ΔmybA strain suggested that MybA protein controls the expression of enzymes involved in trehalose biosynthesis as well as other cell wall and membrane-associated proteins and ROS scavenging enzymes. In summary, MybA protein is a new key regulator of conidiogenesis and conidial maturation and survival, and plays a crucial role in propagation and virulence of A. fumigatus.


Assuntos
Aspergillus fumigatus/genética , Esporos Fúngicos/genética , Aspergilose/microbiologia , Aspergillus fumigatus/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica/genética , Humanos , Proteínas de Membrana/metabolismo , Deleção de Sequência , Fatores de Transcrição/metabolismo , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...